В школьное самоуправление избирается 3 человека из класс с условиями: это не может быть 3 девочки или...

Тематика Технология
Уровень 5 - 9 классы
школьное самоуправление делегация комбинаторика девочки мальчики выборы класс математика
0

В школьное самоуправление избирается 3 человека из класс с условиями: это не может быть 3 девочки или 3 мальчика в классе 18 человек 10 из них девочки а 8 мальчики.Сколько вариантов делегации от этого класса может быть?

avatar
задан 5 месяцев назад

2 Ответа

0

Для решения этой задачи нужно учесть условия, при которых формируется делегация из трёх человек. В данном случае, делегация не может состоять только из девочек или только из мальчиков. Это значит, что нужно рассмотреть два возможных сценария:

  1. Делегация состоит из двух девочек и одного мальчика.
  2. Делегация состоит из двух мальчиков и одной девочки.

Теперь рассчитаем количество возможных комбинаций для каждого сценария.

1. Делегация из двух девочек и одного мальчика

  • Выбираем 2 девочек из 10: это можно сделать с помощью комбинаций, что обозначается как C(n, k) = n! / (k! * (n-k)!), где n — общее количество элементов, а k — количество выбираемых элементов.

[ C(10, 2) = \frac{10!}{2!(10-2)!} = \frac{10 \times 9}{2 \times 1} = 45 ]

  • Выбираем 1 мальчика из 8:

[ C(8, 1) = \frac{8!}{1!(8-1)!} = 8 ]

  • Общее количество комбинаций для этого случая:

[ 45 \times 8 = 360 ]

2. Делегация из двух мальчиков и одной девочки

  • Выбираем 2 мальчиков из 8:

[ C(8, 2) = \frac{8!}{2!(8-2)!} = \frac{8 \times 7}{2 \times 1} = 28 ]

  • Выбираем 1 девочку из 10:

[ C(10, 1) = \frac{10!}{1!(10-1)!} = 10 ]

  • Общее количество комбинаций для этого случая:

[ 28 \times 10 = 280 ]

Итог

Теперь сложим количество возможных комбинаций для обоих сценариев:

[ 360 + 280 = 640 ]

Таким образом, общее количество вариантов делегации, удовлетворяющих условиям задачи, составляет 640.

avatar
ответил 5 месяцев назад
0

Для выбора 3 членов школьного самоуправления из класса, в котором 10 девочек и 8 мальчиков, мы можем рассмотреть следующие варианты:

  1. 2 девочки и 1 мальчик
  2. 1 девочка и 2 мальчика

Для каждого из этих вариантов мы можем рассчитать количество возможных комбинаций:

  1. 2 девочки и 1 мальчик: Количество способов выбрать 2 девочки из 10: C(10,2) = 45 Количество способов выбрать 1 мальчика из 8: C(8,1) = 8 Общее количество комбинаций для этого варианта: 45 * 8 = 360

  2. 1 девочка и 2 мальчика: Количество способов выбрать 1 девочку из 10: C(10,1) = 10 Количество способов выбрать 2 мальчика из 8: C(8,2) = 28 Общее количество комбинаций для этого варианта: 10 * 28 = 280

Итак, общее количество вариантов для выбора делегации из этого класса составляет 360 + 280 = 640.

Таким образом, можно сформировать 640 различных делегаций из данного класса для школьного самоуправления.

avatar
ответил 5 месяцев назад

Ваш ответ

Вопросы по теме

Как сделать косынку 5 класс?
3 месяца назад Bithnice